THE WORK OF GREGOR MENDEL

- Genetics- ______________________________.
- ______________________________- Austrian monk- the father of genetics- carried out his work on ____________________.
 - Pea flowers are naturally ____________________, which means that sperm cells fertilize the egg cells in the same flower, thus the new flower inherits all of their characteristics from the single plant that bore them.
- ______________________________- organisms that produce offspring identical to themselves if allowed to self-pollinate.
 - ie: one stock of seeds would produce only tall plants, another only short plants. One stock would produce yellow seeds, another only green seeds.
- ______________________________- produced seeds that had two different plants as parents.

GENES AND DOMINANCE

- __________- a specific characteristic that varies from one individual to another.
- Each original pair of plants is called the P (________________) generation.
- The ____________________ are called the F₁ (first filial) generation.
- _______________- the offspring of crosses with different traits.
• _____________ - chemical factors that determine an organism’s traits. Genes are passed from parents to their offspring (one gene from each parent).
• _____________ - different forms of a gene.
 – ie: forms that produce tall vs. short plants or round vs. wrinkled seeds.
• **Principle of Dominance** - ___

 – An organism with a _____________ allele for a specific form of a trait will always exhibit that form of the trait.
 – An organism with a _____________ allele for a specific form of a trait will exhibit that form only when the dominant allele for the trait is not present.

<table>
<thead>
<tr>
<th>Seed Shape</th>
<th>Seed Color</th>
<th>Seed Coat Color</th>
<th>Pod Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Round</td>
<td>Yellow</td>
<td>Smooth</td>
</tr>
<tr>
<td></td>
<td>Wrinkled</td>
<td>Green</td>
<td>Constricted</td>
</tr>
<tr>
<td>F₁</td>
<td>Round</td>
<td>Yellow</td>
<td>Gray</td>
</tr>
</tbody>
</table>

SEGREGATION

• The reappearance of the recessive trait indicated that at some point the paired alleles are separated or go through _____________ during the formation of gametes.
• **Gametes** - __
 __
GENETICS AND PROBABILITY

• Probability

 – Remember, past outcomes do not affect future outcomes.
 – The principles of probability can be used to predict the outcomes of genetic crosses.

• Punnett Square

• organisms that have two identical alleles for a particular trait (__________).
 – Homozygous organisms are __________________ for a particular trait.
• organisms that have two different alleles for the same trait. (____)

• Phenotype

• Genotype

 – Homozygous dominant, heterozygous, homozygous recessive

• Probabilities predict ________________. Thus, the larger the number of offspring, the closer the resulting numbers will be the expected values.

TWO FACTOR CROSS
INDEPENDENT ASSORTMENT

- genes for different traits segregate independently, such that the genes for one trait do not influence another trait.

PATTERNS OF INHERITANCE

- Some alleles are neither dominant nor recessive, and many traits are controlled by __________________________ or __________________________.

- __________________________- one allele is not completely dominant over another.
 - In incomplete dominance, the __________________________ phenotype is somewhere in between the two homozygous phenotypes.

- __________________________- both alleles contribute to the phenotype.
 - Ex: __________________________

- __________________________- genes having more than two alleles.
 - This does not mean that an individual can have more than two alleles, it means that more than two possible alleles exist in a population for a given trait.
 - Ex: human blood type

- __________________________- controlled by two or more genes.
 - Ex: skin color of humans- controlled by more than four different genes.
APPLYING MENDEL’S PRINCIPLES

• Mendel’s principles don’t apply only to plants.

• In the early 1900s, _____________________________ found a model organism to advance the study of genetics, the common _____________________________.

• Fruit flies were an ideal organism for several reasons:
 – They could produce plenty of offspring, and they did so quickly
 – Morgan and other biologists learned that Mendel’s principles applied not to just pea plants, but other organisms and humans too.

GENETICS AND THE ENVIRONMENT

• The characteristics of any organism are not determined solely by the genes it inherits, but by the interaction between genes and the _____________________________.
 – Ex: genes may affect a flower’s height and the color of its flowers, but these same characteristics are also influenced by climate, soil conditions, and availability of water.

CHROMOSOME NUMBER

• The Chromosomal Theory of Inheritance - ____________________________

• ____________________________ - chromosomes form in pairs, one from the male parent and one from the female parent.

• ____________________________ - a cell that contains both sets of homologous chromosomes. (2N) Example: ____________________________
 – Diploid cells contain two complete sets of chromosomes and two complete sets of genes.

• ____________________________ - a cell only containing one set of chromosomes. (N) Example: ____________________________
MEIOSIS

• **Meiosis**- a process of _______________ division in which the number of chromosomes is cut in half through separation of homologous chromosomes in a diploid cell.

 o Meiosis takes place in two distinct divisions: __________ and __________

• _________________ - cells undergo DNA replication, forming duplicate chromosomes. Nucleus breaks down.

• **Meiosis I**

 – __________ - each chromosome pairs with its corresponding homologous chromosome to form a tetrad. Crossing over occurs in prophase I.

 – ____________ - chromosomes line up in the middle of the cell and attach to spindle fibers.

 – ____________ - spindle fibers pull chromosomes toward opposite ends of the cell.

 – _________________ - nuclear membrane reforms and the cell divides into two cells.

 – _________________ - in prophase I, homologous chromosomes exchange portions of their chromatids.

 o This produces new combinations of alleles and allows for more genetic variation.

• **Meiosis II**

 – _________________ - meiosis I resulted in two haploid daughter cells with half the number of chromosomes as the original cell.

 – _________________ - the chromosomes line up in the middle of the cell.

 – _________________ - sister chromatids are separated and move toward opposite ends of the cell.

 – _________________ - nuclear membranes form and meiosis II results in four haploid daughter cells.

www.brownbiology.com
GAMETE FORMATION

- In male animals, meiosis results in __________ equal-sized gametes called sperm.
- In many female animals, only _________ egg results from meiosis. The other three cells, called __________________________, are usually not involved in reproduction.
PARING MITOSIS AND MEIOSIS

• Mitosis results in the production of ___________________________ cells, whereas meiosis produces ___________________________ cells.

GENE MAPS

• ___________________________ studied gene linkage on ___________________________.

 His conclusions:
 – Each chromosome is actually a group of linked genes.
 – Mendel’s principle of independent assortment still holds true.

• It is the ___________________________ that assort independently, not the individual genes.

• Crossing-over during meiosis sometimes separates genes that had been on the same chromosomes onto homologous chromosomes.
 – Crossover events occasionally separate and exchange linked genes and produce new combinations of alleles, which helps generate ___________________________.

• Alfred Sturtevant (student to Morgan)
 – Reasoned that the ___________________________ apart two genes are, the more likely they are to be separated by a crossover event.
 – This allowed him to use recombination frequencies to determine the distances between genes.

• ___________________________ - shows the relative location of genes on a chromosome.
 – If two genes are ____________ together, the recombination frequency between them should be ____________, since crossovers are ____________.
 – If they are ________ apart, recombination rates between them should be ____________.
HUMAN CHROMOSOMES

- ____________________________ - a picture of chromosomes grouped together in pairs.
 - Humans have __________ chromosomes. Two of them are sex chromosomes, because they determine an individual's sex. The remaining 44 chromosomes are called ____________________________.
 - Females are __________ and males are __________.

HUMAN TRAITS

- ____________________________ - shows the relationships within a family.
 - The phenotype of organisms are only partly governed by the genotype. Many traits are strongly influenced by the ____________________________, nutrition, and exercise.
 - Environmental effects are not inherited though, only genes are inherited.

HUMAN GENES

- The Human Genome- __

www.brownbiology.com
HUMAN BLOOD GROUPS

- The Rh blood group is determined by a single gene with two alleles- positive and negative.
 - The positive Rh+ allele is ________________.
- The ABO blood group has three alleles ______, ______, and _____.
 - Alleles I^A and I^B are _______________________. These alleles produce molecules known as antigens on the surface of red blood cells.
 - The i allele is ________________________ and produces no antigen.

BLOOD GROUP CHART

<table>
<thead>
<tr>
<th>BLOOD TYPE</th>
<th>IMAGE</th>
<th>PHENOTYPE</th>
<th>GIVE TO</th>
<th>RECEIVE FROM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

www.brownbiology.com
FROM GENE TO MOLECULE

- In some diseases, such as cystic fibrosis, and sickle cell disease, a small change in the DNA of a single gene affects the structure of a protein, causing a serious genetic disorder.

HUMAN GENES AND CHROMOSOMES

- **Sex-Linked Genes**

 - Males have just one X chromosome, thus all X-linked alleles are expressed in males, even if they are recessive.

 ![Diagram of X and Y chromosomes with alleles and phenotypes]

SAMPLE SEX-LINKED PROBLEMS

1. Hemophilia is a rare recessive hereditary disease of the blood. The blood of individuals with this condition does not clot properly. Without the capacity for blood clotting, even a small cut can be lethal.

 a. A woman who is homozygous dominant for normal blood, marries a man with normal blood. Show the punnett square and possible phenotypic outcomes of their offspring.

 b. A woman who is heterozygous for normal blood marries a man who has hemophilia. Show the punnett square and possible phenotypic outcomes of their offspring.
HUMAN GENES AND CHROMOSOMES

• __________________________- an inactive form of an X chromosome in females.
• __________________________- when homologous chromosomes fail to separate in meiosis.
 – Nondisjunction can lead to an abnormal number of chromosomes.